ТЭ1/Алюминотермия

Материал из Викитеки — свободной библиотеки

АЛЮМИНОТЕРМИЯ, в технике — совокупность производственных процессов, в к-рых применяется изобретенный в 1894 г. герм. проф. Гольдшмидтом способ восстановления металлов из их окислов, основанный на том, что металлич. алюминий при высоких t° способен окисляться за счет кислорода металлич. окислов. Реакция эта м. б. объяснена правилом Вертело, являющимся, однако, только некоторым приближением; согласно правилу, из нескольких возможных хим. реакций имеет место та реакция, при которой выделяется наибольшее количество теплоты. Теплота, выделяющаяся при сгорании алюминия в Al₂O₃, равна 7140 cal и превосходит теплоту сгорания (окисления) других металлов. На практике для протекания реакции восстановления окислов алюминием требуется наличность некоторых других факторов; так, напр., часто для получения удовлетворительного результата необходимо прибавить вещества, вызывающие усиление реакции, или прибавить флюсы (напр, плавиковый шпат CaF₂), или сплавлять восстановляемые окислы с энергично действующими металлами, или, как при восстановлении хрома, прибавлять хромовокислые соли. Для ускорения реакции прибавляют также бертолетовую соль KClO₃ (при получении B, Be, Cr, Se, Ti, Th). Большое значение для правильного протекания реакции имеет выбор соответствующего металлического окисла и его количество: MnO₂, напр., реагирует с алюминием очень энергично, MnO — слишком слабо; наилучшим образом реакция восстановления марганца из его окислов протекает при смеси обоих окислов. Алюминотермич. реакции протекают с выделением большого количества, тепла (t° реакции достигает 3 000°), при чем восстановленный расплавленный металл нагревается до белого каления, расплавленные же глиноземистые шлаки всплывают наверх. Смесь окисла металла с алюминием в пропорции, необходимой для протекания реакции восстановления, называется термитом. В зависимости от наименования окисла металла, входящего в смесь, различают термиты железные, хромовые, марганцевые и др. Чтобы вызвать реакцию, необходимо термитовую смесь предварительно зажечь; довольно высокую t° воспламенения термита получают сжиганием небольшого количества легко воспламеняющейся зажигательной смеси из алюминиевого порошка с перекисью бария. А. дает возможность получить трудновосстанавливаемые металлы и металлоиды, как, напр., хром, марганец, бериллий, бор, в значительных количествах и в исключительно чистом виде. Особое значение А. получила в производстве высококачественных металлич. сплавов различных специальных сталей. Застывшие шлаки по твердости превосходят корунд и в пульверизированном виде представляют очень хороший шлифовальный материал корубин, или искусственный корунд. Из железного термита, т. е. смеси окиси железа с алюминием, получают по способу Гольдшмидта малоуглеродистое ковкое железо — термитовое железо, — обладающее приблизительно следующими механическими свойствами: временное сопротивление на разрыв — 38,7 кг/мм², удлинение — 19%, при химическом составе в %: С — 0,1, Mn — 0,8, Si — 0,09, S — 0,03, P — 0,04, Cu — 0,09, Al — 0,07, остаток — Fe. Реакция термита производится в особых железных тиглях с магнезитовой футеровкой. Расплавленное железо собирается на дне тигля, а сверху плавают состоящие почти из чистого глинозема шлаки, занимающие в тигле в три раза больший объем, чем железо, между тем как вес шлаков составляет половину веса употребленного термита; из 1 кг железного термита получают около ½ кг железа.

Различают два способа производства литья термитового железа из тиглей: 1) опрокидыванием специальных тиглей вместимостью от 1 до 25 кг термита, доведенного уже до состояния реакции; при этом способе литья необходимо предварительно слить верхний плавающий слой шлаков, занимающий около ¾ всего объема массы, — эта работа, во избежание утечки железа, требует некоторой сноровки и м. б. исполнена лишь опытными литейщиками; для загрузки тигля на дно его сперва насыпают небольшое количество термита, который воспламеняют зажигательной смесью; когда реакция сгорания началась, наполняют весь тигель термитом и затем постепенно, по мере опускания реагирующей массы, добавляют остальное количество термита; 2) непосредственным спуском расплавленной массы из т. н. автоматического тигля через отверстие в магнезитовом камне, заделанном в дно такого тигля, при чем сперва вытекает расплавленное железо, а за ним шлак; автоматические тигли делают воронкообразной формы из листового железа с магнезитовой футеровкой вместимостью от одного до нескольких сот кг термита; диаметр спускного отверстия, например у тигля на 50 кг, колеблется в пределах 10—15 мм; загружают эти тигли сразу всей массой термита, которую воспламеняют упомянутой зажигательной смесью.

Фиг. 1

Реакция железного термита, помимо производства ферро-сплавов и специальных сталей, находит также весьма широкое применение в металлообрабатывающей промышленности для сварки железных и стальных изделий. В целом ряде сварочных работ, напр. для сварки железных труб, валов, станин, стержней и пр., используют только высокую t° реакции термита, получающееся же во время этого процесса термитовое железо в самой сварке никакого участия не принимает. В этом случае свариваемые концы очищают, притягивают друг к другу впритык при помощи особого зажимного аппарата (фиг. 1), окружают стык формой из огнеупорного материала, в к-рую затем выливают из специального тигля расплавленную массу термита. Последняя в продолжение точно известного промежутка времени успевает нагреть стык до необходимой для сварки t°, после чего достаточно несколько подтянуть гайки зажимного аппарата, чтобы вызвать необходимое для надежной сварки давление свариваемых концов друг на друга.

Фиг. 2

По окончании сварки аппарат разбирают, а наварившуюся вокруг стыка термитовую массу удаляют легкими ударами молотка (фиг. 2). Другой способ сварки при помощи железного термита основан на использовании не одной только высокой t° реакции сгорания Al, но и восстановленного этой реакцией сильно нагретого, мягкого, малоуглеродистого железа, при чем применяемые при этом приемы сварки отличаются от таковых при сварке нагревом с давлением. Расплавленную термитовую массу либо льют из спец. тиглей по удалении шлаков, либо спускают из воронкообразных, т. н. автоматических, тиглей при помощи примитивного спускового приспособления (фиг. 3) в расположенную непосредственно под тиглем форму из огнеупорной массы, при чем сперва вытекает находящееся на дне тигля расплавленное железо, а за ним шлаки, для отвода которых в верхней части формы имеется специальное отверстие.

Фиг. 3

Для литья восходящим током форму обычно снабжают соответствующим литником. Этот способ применяют для сварки ж.-д. рельсов, при чем одновременно со сваркой стыка получаются прочно сваренные с рельсами стыковые накладки из мягкого термитового железа; такая сварка дает спокойный ход подвижного состава, а на ж. д. с электрической тягой, кроме того, уменьшает сопротивление обратному току, проводником которого служат рельсы. Этот способ сварки находит широкое применение во флоте, на верфях, на з-дах и т. д. для сварки гребных и трансмиссионных валов, для исправления поломок этих валов и пороков в стальном фасонном литье и поковках, для наварки изношенных деталей машин и т. д. Даже поломки чугунных изделий при тщательном ведении процесса поддаются исправлению этим способом сварки, при чем термитовая реакция в этих случаях служит гл. обр. для подогрева поверхностей излома, а соединение частей достигается струей расплавленного чугуна; для подогрева достаточно 0,25—0,35 кг' термита на см² поверхности излома. Наконец, термит дает возможность в случае внезапных поломок деталей машин при отсутствии запасных частей быстро получить расплавленную сталь соответствующего состава для новых отливок. Кроме того, алюминотермическими реакциями пользуются в производстве искусственного корунда, ферротитана, феррованадия и ферромолибдена.

Лит.: Fr. Ullmann's Enzykl. d. techn. Chemie, B. 1, р. 326—340, B.—Wien, 1914; Deppeler J. H., Thermit Welding Development, «Journ. Am. Weld. Soc.», 4, р. 58—64, 1925; Goldschmidt H., Ein neues Verfahren zur Darstellung v. Metallen, Legierungen usw., «Ztschr. d. V. D. I.», B. 42, 37, р. 1019—1022, В., 1898.